| |||||
| |||||
教育經(jīng)歷: 2013—2017年畢業(yè)于洛陽(yáng)師范學(xué)院,,獲得理學(xué)學(xué)士學(xué)位,; 2017—2020年畢業(yè)于河南大學(xué),獲得理學(xué)碩士學(xué)位,; 2020—2024年畢業(yè)于西南交通大學(xué),,獲得理學(xué)博士學(xué)位。 工作經(jīng)歷: 2024.12—至今,,河南師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,,講師。
| |||||
| |||||
序列設(shè)計(jì)及其應(yīng)用,,密碼函數(shù)的設(shè)計(jì)與分析,,代數(shù)編碼 | |||||
| |||||
| |||||
| |||||
| |||||
| |||||
[1] Zhang Hui, Fan Cuiling, Yang Yang and Mesnager Sihem. New binary cross Z-complementary pairs with large CZC ratio. IEEE Transactions on Information Theory, 2023, vol.69, no.2, pp.1328-1336. (SCI,三區(qū),,IF 2.2) [2] Adhikary Avik Ranjan, Zhang Hui, Zhou Zhengchun, Mesnager Sihem. Quasi complementary sequence sets: new bounds and optimal constructions via quasi-Florentine rectangles. IEEE Transactions on Information Theory. 2025, vol.71, no.3, pp.2271-2291. (SCI,,三區(qū),IF 2.347) [3]Zhang Hui, Fan Cuiling, Mesnager Sihem. Constructions of two-dimensional Z-complementary array pairs with large ZCZ ratio. Designs, Codes and Cryptography, 2022, vol.90, no.5, pp.1221-1239. (SCI,,三區(qū),,IF 1.6) [4]Zhang Hui, Fan Cuiling, Adhikary Avik Ranjan, Yang Meng. A unified construction of type-I even length Z-complementary pairs based on generalized Boolean function. Advances in Mathematics of Communications, 2025, vol.19, no.2, pp.572-587. (SCI,四區(qū),,IF 0.662) [5] Liu Ji Hui, Zhang Hui, Su Wei, Luo Rong. A construction of binary cross Z-complementary pairs with large CZC ratio. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2024, vol.E107-A, no.1,pp.1-5.(SCI,,四區(qū),IF 0.364) [6] Zhang Hui, Su Sihong. A new construction of rotation symmetric Boolean functions with optimal algebraic immunity and higher nonlinearity. Discrete Applied Mathematics, 2019, vol.262, pp.13-28. (SCI, 三區(qū),,IF 1.041) [7] Mesnager Sihem, Su Sihong, Zhang Hui. A construction method of balanced rotation symmetric Boolean functions on arbitrary even number of variables with optimal algebraic immunity. Designs, Codes and Cryptography, 2021, vol.89, pp.1-17. (SCI, 二區(qū),,IF 1.397) |