| |||||
| |||||
教育經(jīng)歷: 2012—2016,,鄭州大學(xué),,數(shù)學(xué)與統(tǒng)計學(xué)院,,本科 2016—2018,,鄭州大學(xué),,數(shù)學(xué)與統(tǒng)計學(xué)院,,碩士 2018—2022,,鄭州大學(xué),,數(shù)學(xué)與統(tǒng)計學(xué)院,博士 2022—2024,,南開大學(xué),,數(shù)學(xué)科學(xué)學(xué)院,博士后 工作經(jīng)歷: 2024.11—至今,,河南師范大學(xué),,數(shù)學(xué)與統(tǒng)計學(xué)院,,講師 | |||||
| |||||
微分幾何 | |||||
| |||||
| |||||
| |||||
美國《數(shù)學(xué)評論》評論員 德國《數(shù)學(xué)文摘》評論員
| |||||
| |||||
1.中國博士后科學(xué)基金-面上項目(2023M731810),2023-2024,,主持 2.國家自然科學(xué)基金-面上項目(12171437),,2022-2025,參與 3.國家自然科學(xué)基金-面上項目(11771404),,2018-2021,,參與 | |||||
|
[1] Hu, Zejun; Xing, Cheng*: On the Ricci curvature of 3-submanifolds in the unit sphere. Arch. Math. (Basel) 115 (2020), no. 6, 727-735. (SCI)
[2] Hu, Zejun; Xing, Cheng*: New equiaffine characterizations of the ellipsoids related to an equiaffine integral inequality on hyperovaloids. Math. Inequal. Appl. 24 (2021), no. 2, 337-350. (SCI)
[3] Hu, Zejun; Xing, Cheng*: A new centroaffine characterization of the ellipsoids. Proc. Amer. Math. Soc. 149 (2021), no. 8, 3531-3540. (SCI)
[4] Hu, Zejun; Xing, Cheng*: New characterizations of the Whitney spheres and the contact Whitney spheres. Mediterr. J. Math. 19 (2022), no. 2, Paper No. 75, 14 pp. (SCI)
[5] Hu, Zejun; Li, Cece; Xing, Cheng*: On Lorentzian Einstein affine hyperspheres. J. Geom. Phys. 179 (2022), Paper No. 104587, 13 pp. (SCI)
[6] Cheng, Xiuxiu; Hu, Zejun; Xing, Cheng*: On centroaffine Tchebychev hypersurfaces with constant sectional curvature. Results Math. 77 (2022), no. 4, Paper No. 175, 29 pp. (SCI)
[7] Hu, Zejun; Li, Meng; Xing, Cheng*: On C-totally real minimal submanifolds of the Sasakian space forms with parallel Ricci tensor. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 4, Paper No. 163, 25 pp. (SCI)
[8] Li, Cece*; Xing, Cheng; Xu, Huiyang: Locally strongly convex affine hypersurfaces with semi-parallel cubic form. J. Geom. Anal. 33 (2023), no. 3, Paper No. 81, 33 pp. (SCI)
[9] Xu, Huiyang; Li, Cece; Xing, Cheng*: On conformally flat centroaffine hypersurfaces with semi-parallel cubic form. J. Math. Anal. Appl. 523 (2023), no. 2, Paper No. 127095, 15 pp. (SCI)
[10] Xing, Cheng; Zhai, Shujie*: Minimal Legendrian submanifolds in Sasakian space forms with C-parallel second fundamental form. J. Geom. Phys. 187 (2023), Paper No. 104790, 15 pp. (SCI)
[11] Hu, Zejun; Xing, Cheng*: Locally conformally flat affine hyperspheres with parallel Ricci tensor. J. Math. Anal. Appl. 528 (2023), no. 1, Paper No. 127596, 11 pp. (SCI)
[12] Zhai, Shujie; Xing, Cheng*: Classification of semi-parallel hypersurfaces of the product of two spheres. Differential Geom. Appl. 91 (2023), Paper No. 102067, 13 pp.
[13] Gao, Mingzhu; Hu, Zejun; Xing, Cheng*: A rigidity theorem for hypersurfaces of the odd-dimensional unit sphere . Colloq. Math. 174 (2023), no. 2, 151-160. (SCI)
[14] Li, Dehe; Xing, Cheng*; Zhang, Lifen: Cyclic semi-parallel real hypersurfaces in complex Grassmannians of rank two. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 118 (2024), no. 1, Paper No. 8, 14 pp. (SCI)
[15] Xing, Cheng; Yin, Jiabin*: Some optimal inequalities for anti-invariant submanifolds of the unit sphere. J. Geom. Anal. 34 (2024), no. 2, Paper No. 38, 24 pp. (SCI)
[16] Li, Cece*; Xing, Cheng; Xu, Huiyang: On affine hypersurfaces with parallel cubic form relative to affine α-connection. Acta Math. Sin. (Engl. Ser.) 40 (2024), no. 4, 1099-1114. (SCI)
[17] Duan, Weilin; Hu, Zejun; Xing, Cheng*: On conformally flat manifolds with semi-parallel Ricci tensor and applications to the study of affine hyperspheres. Results Math. 79 (2024), no. 5, Paper No. 205, 17 pp. (SCI)
[18] Li, Cece; Xing, Cheng*: On minimal Lagrangian submanifolds in complex space forms with semi-parallel second fundamental form. Internat. J. Math. 35 (2024), no. 14, Paper No. 2450056, 24 pp. (SCI)
[19] Li, Cece; Xing, Cheng*; Yin Jiabin: On conformally flat minimal Legendrian submanifolds in the unit sphere, Proc. Roy. Soc. Edinburgh Sect. A (2024), 30 pp, DOI:10.1017/prm.2024.57 (SCI)
[20] Xu, Huiyang; Li, Cece; Xing, Cheng*: Lagrangian H-umbilical submanifolds in complex space forms and pseudo-parallel cubic form. J. Geom. Phys. 209 (2025), Paper No. 105401, 12 pp. (SCI)