| |||||
| |||||
教育經(jīng)歷: 2013—2017年畢業(yè)于河南科技學(xué)院,,獲得理學(xué)學(xué)士學(xué)位; 2017—2020年畢業(yè)于溫州大學(xué),,獲得理學(xué)碩士學(xué)位,; 2020—2024年畢業(yè)于河海大學(xué),獲得工學(xué)博士學(xué)位 工作經(jīng)歷: 2024.6—至今,,河南師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,,講師;
| |||||
| |||||
隨機無窮維動力系統(tǒng),隨機波動方程的動力學(xué)行為等 | |||||
| |||||
| |||||
| |||||
獲得:浙江省優(yōu)秀碩士學(xué)位論文,;
| |||||
| |||||
1.國家自然科學(xué)基金-面上項目(11971356), 非線性發(fā)展方程的吸引子與統(tǒng)計解,,參與2020-2023
| |||||
[1] Li Yanjiao, Li Xiaojun. Martingale solutions and invariant measures for the stochastic strongly damped wave equation with critical nonlinearity. Discrete Contin. Dyn. Syst., 2024, 44: 1587-1627.(中國數(shù)學(xué)會T2期刊,SCI) [2] Li Yanjiao, Liang Yunyun, Sun Wenlong. Invariant measures for the stochastic strongly damped wave equation. J. Math. Phys., 2025, 66: 031501.(中國數(shù)學(xué)會T2期刊,,SCI) [3] Li Yanjiao, Li Bowen, Li Xiaojun. Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on [4] Li Yanjiao, Li Xiaojun. Fractal dimension of random attractors for nonautonomous stochastic strongly damped wave equations on [5] Li Yanjiao, Li Xiaojun. Equivalence between invariant measures and statistical solutions for the 2D non-autonomous magneto-micropolar fluid equations. Math. Methods Appl. Sci., 2022, 45: 2638-2657. [6] Li Yanjiao, Li Xiaojun, Zuo Jiabin. Random attractors for non-autonomous stochastic wave equations with strong damping and additive noise on [7] Zhao Caidi, Li Yanjiao, Caraballo Tomás. Trajectory statistical solutions and Liouville type equations for evolution equations: abstract results and applications. J. Differential Equations, 2020, 269: 467-494. (中國數(shù)學(xué)會T2期刊,SCI) [8] Zhao Caidi, Li Yanjiao, Lukaszewicz Grzegorz. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z. Angew. Math. Phys., 2020, 71: 141, 24 pp. (中國數(shù)學(xué)會T2期刊,,SCI) [9] Zhao Caidi, Li Yanjiao, Sang Yanmiao. Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows. ZAMM Z. Angew. Math. Mech., 2020, 100: e201800197, 15 pp.(中國數(shù)學(xué)會T2期刊,,SCI) |