發(fā)表的論文SCI二區(qū)六篇,皆為第一作者和通訊作者,,其中兩篇為獨著,。還有兩篇三區(qū)的SCI和一片中文核心。 文章如下: 1, Keqiang Li*, Yingyu Qiu, Multiple periodic orbits of asymptotically linear autonomous convex Hamiltonian systems, J. Math. Anal. Appl. , Volume 363, Issue 1, Pages 49-56, 2010. 2, Keqiang Li*, Multiple Periodic Solutions for Asymptotically Linear Duffing Equations with Resonance,,J. Math. Anal. Appl., Volume 378, Issue 2, Pages 657-666, 2011. 3, Keqiang Li*, Multiple solutions for asymptotically linear Duffing equation with Neumann boundary value conditions, Nonlinear Anal. TMA, Volume 74, Issue 8, Pages 2819-2830, 2011. 4,,Keqiang Li*, Shangjiu Wang, Yonggang Zhao,Multiple periodic solutions for asymptotically linear Duffing equations with resonance (II),,J. Math.Anal. Appl., Volume 397, Issue 1, Pages 156-160, 2013,。 5,Keqiang Li*, Juntao Li, Wentao Mao,,Multiple solutions for asymptotically linear Duffing equations with Neumann boundary value conditions (II), J. Math. Anal. Appl., Volume 401, Issue 2, Pages 548-553, 2013. 6,,Keqiang Li*, Yuan Shan, Yanchang Chen, Multiple periodic solutions for asymptotically linear ordinary differential equations with double resonance, J. Math. Anal. Appl., (in pressing DOI information: 10.1016/j.jmaa.2013.02.038). 7. Shan Yuan, Keqiang Li*,Index theory for linear elliptic equation and multiple solutions for asymptotically linear elliptic equation with resonance 2014.Topological Methods in Nonlinear Analysis 8 ,李科強*, 對凸哈密頓系統(tǒng)周期解的一個存在性定理的推廣,,南京師大學報,, 第34卷, 第1期,, 12-18頁,, 2011 9 Guojie Zheng, Keqiang Li*, Jun Li, Quantitative unique continuation for the linear coupled heat equations, Journal of inequalities and applications 2017 2017(234)1-17.
|