久久精品亚洲成av|口工全彩漫画|麻豆精品内射|亚洲国产91精品在线|亚洲国产吃瓜|91制片厂 是国产的吗|麻豆是传媒短视频在线观|91制片厂果冻传51|麻豆md传媒新搬的女邻|麻豆尤物久久久一区av,91大神视频,糖心vlog御梦,三极网站

閆 威 博士


 


  

閆威  教授  博士生導(dǎo)師
 
電子郵件: [email protected]
 
通信地址: 數(shù)學(xué)與信息科學(xué)學(xué)院
 郵  編: 453007




個(gè)人簡歷

教育經(jīng)歷:

2002—2006 畢業(yè)于南陽師范學(xué)院,,獲得理學(xué)學(xué)士學(xué)位,;

2006—2011 碩博連讀于華南理工大學(xué),獲得理學(xué)博士學(xué)位,。

工作經(jīng)歷:

2011.7— 2013.9,  河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,,講師,;

2013.10—2020.3,  河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,,副教授(其間:2016.09—2017.09, 國家公派訪問學(xué)者,,訪問美國伊利諾伊理工大學(xué)應(yīng)用數(shù)學(xué)系)

2020.4-  至今 ,,   河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,,教授



研究領(lǐng)域

偏微分方程,調(diào)和分析,,隨機(jī)偏微分方程,,初值隨機(jī)化


教學(xué)工作

主講本科生課程:《線性代數(shù) 》、《高等數(shù)學(xué)》,、《專業(yè)英語》,、《數(shù)學(xué)物理方法》、《數(shù)學(xué)物理方程》,、《常微分方程》

主講研究生課程:《偏微分方程》,、《調(diào)和分析》


獎(jiǎng)勵(lì)與榮譽(yù)




2014,   榮獲2012-2014年度河南師范大學(xué)優(yōu)秀教師稱號(hào)

2014,   榮獲河南師范大學(xué)2014年度校骨干教師稱號(hào)

2016,   榮獲河南師范大學(xué)優(yōu)秀實(shí)習(xí)指導(dǎo)教師稱號(hào)

2019,   榮獲河南師范大學(xué)2017-2018年度文明教師稱號(hào)

2020,   榮獲河南師范大學(xué)優(yōu)秀共產(chǎn)黨員



科研項(xiàng)目


 1.國家自然科學(xué)基金, Camassa-Holm型方程解的整體存在性和爆破性研究,2013.01-2013.12,,主持

2.國家自然科學(xué)基金,, 水波中某些非線性色散方程的適定性研究,2015.01-2017.12,, 主持

3.國家自然科學(xué)基金,, KP型方程和Ostrovsky型方程低正則性解的研究,2018.01-2021.12,,主持

4.國家留學(xué)基金委項(xiàng)目,   色散波方程的初值隨機(jī)化,, 2016.09-2017.09,主持.

5.河南省骨干教師項(xiàng)目,   高階薛定諤方程的柯西問題的研究,2018.1-2020.12,主持



論文著作

[1] Yan, WeiZhang, QiaoqiaoZhang, HaixiaZhao, Lu The Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation. J. Math. Anal. Appl. 489?(2020),?no. 2,124198, 37 pp.

[2] Yan, WeiLi, YongshengHuang, JianhuaDuan, Jinqiao The Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili-I equation in anisotropic Sobolev spaces.Anal. Appl. (Singap.) 18?(2020),?no. 3, 469-522.

[3] Yan, WeiYang, MeihuaDuan, Jinqiao White noise driven Ostrovsky equation. J. Differential Equations 267?(2019),?no. 10, 5701-5735.

[4] Yan, WeiLi, YongshengZhai, XiaopingZhang, Yimin The Cauchy problem for higher-order modified Camassa-Holm equations on the circle. Nonlinear Anal. 187?(2019),?397–433. 

[5] Yan, WeiZhang, QiaoqiaoZhao, LuZhang, Haixia The local well-posedness and the weak rotation limit for the cubic Ostrovsky equation. Appl. Math. Lett. 96?(2019),?147-152.

[6] Fan, LiliYan, Wei The Cauchy problem for shallow water waves of large amplitude in Besov space. J. Differential Equations 267?(2019),?no. 3, 1705-1730. 

[7]Fan, LiliYan, Wei On the weak solutions and persistence properties for the variable depth KDV general equations. Nonlinear Anal. Real World Appl. 44?(2018),?223-245. 

[8] Yan, WeiLi, YongshengHuang, JianhuaDuan, Jinqiao The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Differential Equations Appl. 25(2018),?no. 3, Paper No. 22, 37 pp. 

[9] Zhai, XiaopingLi, YongshengYan, Wei Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations. Anal. Appl. (Singap.) 16(2018),?no. 3, 363-405. 

[10] Wang, JunFangYan, Wei The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion. Nonlinear Anal. Real World Appl. 43?(2018),?283–307. 

[11] Ren, YuanyuanLi, YongshengYan, Wei Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schr?dinger equation. Commun. Pure Appl. Anal. 17(2018),?no. 2, 487-504. 

[12] Jiang, MinjieYan, WeiZhang, Yimin Sharp well-posedness of the Cauchy problem for the higher-order dispersive equation. Acta Math. Sci. Ser. B (Engl. Ed.) 37?(2017),?no. 4,1061-1082. 

[13] Zhai, XiaopingLi, YongshengYan, Wei Global solution to the 3-D density-dependent incompressible flow of liquid crystals. Nonlinear Anal. 156?(2017),?249-274.

[14] Yan, WeiLi, YongshengZhai, XiaopingZhang, Yimin The Cauchy problem for the shallow water type equations in low regularity spaces on the circle. Adv. Differential Equations 22?(2017),?no. 5-6, 363-402.

[15]Ma, HaitaoZhai, XiaopingYan, WeiLi, Yongsheng Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov-Sobolev-type spaces. Z. Angew. Math. Phys. 68?(2017),?no. 1, Paper No. 14, 37 pp.

[16]Li, ShimingLi, YongshengYan, Wei A global existence and blow-up threshold for Davey-Stewartson equations in R3. Discrete Contin. Dyn. Syst. Ser. S 9?(2016),?no. 6,1899-1912.

[17]Lin, LinLv, GuangyingYan, Wei Well-posedness and limit behaviors for a stochastic higher order modified Camassa-Holm equation. Stoch. Dyn. 16?(2016),?no. 6, 1650019, 19 pp.

[18] Zhai, XiaopingLi, YongshengYan, Wei Well-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces. Acta Appl. Math. 143(2016),?1-13.

[19]Zhai, XiaopingLi, YongshengYan, Wei Global solutions to the Navier-Stokes-Landau-Lifshitz system. Math. Nachr. 289?(2016),?no. 2-3, 377-388.

[20]Li, ShimingYan, WeiLi, YongshengHuang, Jianhua The Cauchy problem for a higher order shallow water type equation on the circle. J. Differential Equations 259?(2015),?no. 9, 4863-4896.

[21]Zhai, XiaopingLi, YongshengYan, Wei Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces. J. Math. Anal. Appl. 432(2015),?no. 1, 179-195.

[22]Zhai, XiaopingLi, YongshengYan, Wei Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14?(2015),?no. 5, 1865–1884. 

[23]Chen, DefuLi, YongshengYan, Wei On well-posedness of two-component Camassa-Holm system in the critical Besov space. Nonlinear Anal. 120?(2015),?285-298.

[24] Li, YongshengHuang, JianhuaYan, Wei The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity. J. Differential Equations 259(2015),?no. 4, 1379-1408. 

[25]Zhao, YongyeLi, YongshengYan, Wei The global weak solutions to the Cauchy problem of the generalized Novikov equation. Appl. Anal. 94?(2015),?no. 7, 1334-1354. 

[26] Yan, WeiLi, Yongsheng The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov space. Ann. Inst. H. Poincaré Anal. Non Linéaire32?(2015),?no. 2, 443-469.

[27] Chen, DefuLi, YongshengYan, Wei On the Cauchy problem for a generalized Camassa-Holm equation. Discrete Contin. Dyn. Syst. 35?(2015),?no. 3, 871-889.

[28] Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation. Appl. Anal. 93?(2014),?no. 7, 1358–1381. 

[29] Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the generalized Camassa-Holm equation in Besov space. J. Differential Equations 256?(2014),?no. 8,2876-2901.

[30]Zhao, YongyeLi, YongshengYan, Wei Local well-posedness and persistence property for the generalized Novikov equation. Discrete Contin. Dyn. Syst. 34?(2014),no. 2, 803-820. 

[31]Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the Novikov equation. NoDEA Nonlinear Differential Equations Appl. 20?(2013),?no. 3, 1157-1169.

[32]Yan, WeiLi, YongshengLi, Shiming Sharp well-posedness and ill-posedness of a higher-order modified Camassa-Holm equation. Differential Integral Equations 25(2012),?no. 11-12, 1053–1074. 

[33]Yan, WeiLi, Yongsheng Ill-posedness of modified Kawahara equation and Kaup-Kupershmidt equation. Acta Math. Sci. Ser. B (Engl. Ed.) 32?(2012),?no. 2, 710–716. 

[34] Yan, WeiLi, YongshengZhang, Yimin The Cauchy problem for the integrable Novikov equation. J. Differential Equations 253?(2012),?no. 1, 298-318. 

[35]Yan, WeiLi, YongshengZhang, Yimin Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75?(2012),?no. 4, 2464-2473.

[36]Yan, WeiLi, YongshengYang, Xingyu The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity. Math. Comput. Modelling 54?(2011),?no. 5-6, 1252-1261.

[37] Yan, WeiLi, Yongsheng Ill-posedness of Kawahara equation and Kaup-Kupershmidt equation. J. Math. Anal. Appl. 380?(2011),?no. 2, 486-492.

[38]Yan, WeiLi, Yongsheng The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity. Math. Methods Appl. Sci. 33?(2010),?no. 14, 1647-1660. 

[39]Li, YongshengYan, WeiYang, Xingyu Well-posedness of a higher order modified Camassa-Holm equation in spaces of low regularity. J. Evol. Equ. 10?(2010),?no. 2, 465-486.