呂華
主講課程: 化工基礎(chǔ), 化工基礎(chǔ)實(shí)驗(yàn) 研究領(lǐng)域與興趣: 半導(dǎo)體材料的光電化學(xué),、納米結(jié)構(gòu)的控制合成及應(yīng)用,、生物質(zhì)新能源的高效利用 近年來(lái)主持的主要科研項(xiàng)目: 河南省自然科學(xué)基金項(xiàng)目:項(xiàng)目批準(zhǔn)號(hào):212300410180 (2021.01-2022.12). 河南省高等學(xué)校重點(diǎn)科研項(xiàng)目:項(xiàng)目批準(zhǔn)號(hào):21A150024 (2021.01-2022.12). 河南師范大學(xué)青年基金項(xiàng)目:項(xiàng)目批準(zhǔn)號(hào):2017QK14 (2018.01-2020.12). 河南省高等學(xué)校重點(diǎn)科研項(xiàng)目:項(xiàng)目批準(zhǔn)號(hào):18A150035 (2017.01-2019.12). 河南省教育廳科學(xué)技術(shù)研究重點(diǎn)項(xiàng)目:項(xiàng)目批準(zhǔn)號(hào):14B150049 (2014.01-2015.12). 近年來(lái)部分第一/通訊作者論文: [12] Revealing the synergetic effects of graphene and MoS2 on boosted photocatalytic H2 production of Mn0.5Cd0.5S photocatalyst, Applied Surface Science 505 (2020) 144637. [11] Rational design of Au decorated Mn0.5Cd0.5S/WO3 step-scheme heterostructure with multichannel charge transfer and efficient H2 generation, Applied Surface Science, 2020, 526: 146734. [10] An insight into the trifunctional roles of Cu2(OH)2CO3 cocatalyst in boosting the photocatalytic H2 evolution activity over Zn0.5Cd0.5S nanoparticles, Applied Surface Science, 2019, 484: 1061–1069. [9] Boosting the photocatalytic hydrogen evolution activity of g-C3N4 nanosheets by Cu2(OH)2CO3-modification and dye-sensitization, Dalton Trans., 2019, 48, 1217–1225.(Cover Paper) [8] In situ synthesis of ternary Zn0.5Cd0.5S (0D)/RGO (2D)/g-C3N4 (2D) heterostructures with efficient photocatalytic H2 generation activity, Materials Letters, 2019, 236: 690–693. [7] Synthesis of magnetic Bi2O2CO3/ZnFe2O4 composite with improved photocatalytic activity and easy recyclability, Applied Surface Science, 2018, 433: 610–616. [6] Photoreactivity and mechanism of BiPO4/WO3 heterojunction photocatalysts under simulant sunlight irradiation, Ceramics International, 2018, 44: 6786–6790. [5] Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles, Applied Surface Science, 2017, 425: 100–106. [4] Shape-selective synthesis of Bi2WO6 hierarchical structures and their morphology-dependent photocatalytic activities, RSC Adv., 2016, 6, 80226–80233. [3] Synthesis of ionic liquid-modified BiPO4 microspheres with hierarchical flower-like architectures and enhanced photocatalytic activity, RSC Adv., 2015, 5, 100625–100632. [2] A reversible fluorescent INHIBIT logic gate for determination of silver and iodide based on the use of graphene oxide and a silver–selective probe DNA, Microchim Acta, 2015, 182: 2513-2520. [1] Ionic liquid-assisted hydrothermal synthesis of Bi2WO6–reduced graphene oxide composites with enhanced photocatalytic activity, RSC Adv., 2014, 4, 63238–63245. 部分國(guó)家授權(quán)發(fā)明專(zhuān)利: [9] 呂華,,等, 一種負(fù)載型Bi2MoO6/Cu(OH)2石墨烯光催化劑的制備方法, ZL 201710319069.4. [8] 呂華,,等, 一種Bi2O2CO3-BiFeO3復(fù)合光催劑及其制備方法, ZL 201310235976.6 [7] 呂華,,等, 一種具有立方結(jié)構(gòu)的Bi2WO6光催化劑的制備方法, ZL 201510298204.2. [6] 呂華,,等, 一種一種TiO2-BaTaO2N復(fù)合光催化劑及其制備方法, ZL 201310644491.9. [5] 呂華,,等, 一種Bi2WO6-BaTaO2N復(fù)合光催化劑及其制備方法, ZL 201310644494.2. [4] 呂華,,等, 一種以雞蛋清為模板制備鎢酸鉍光催化劑的方法, ZL 201310644506.1. [3] 呂華,等, 一種Bi2WO6-SrTaO2N復(fù)合光催化劑及其制備方法, ZL 201310644514.6. [2] 呂華,,等, 一種ZnO-CaTaO2N復(fù)合型光催化劑及其制備方法, ZL 201310644608.3. [1] 呂華,,等,一種ZnS-CaTaO2N復(fù)合型光催化劑及其制備方法, ZL 201310644499.5. |