教師簡介
姓名:鄒威 職務:無 職稱:副教授 電子郵箱:[email protected] | ||
個人簡歷 | ||
鄒威(1991—),男,,博士,,副教授,博士生導師,,南開大學優(yōu)秀研究生畢業(yè)生,,中原千人計劃-中原青年拔尖人才,河南省高層次人才,。主持承擔國家自然科學基金面上項目和青年基金,、河南省優(yōu)秀青年基金、青年人才托舉工程項目(中國生態(tài)學學會)等各類項目課題9項,,以第一/通訊作者在Environ. Sci. Technol.,、Water Res.、Environ. Int.和J. Hazard. Mater.等環(huán)境科學與生態(tài)學領域頂級期刊發(fā)表學術(shù)論文30余篇,,擬承擔環(huán)境毒理學和生態(tài)學方向的學生培養(yǎng)工作,,現(xiàn)主要從事新污染物的多介質(zhì)環(huán)境行為及生物生態(tài)效應研究。 | ||
教育/工作經(jīng)歷 | ||
2022.01-至今 河南師范大學 環(huán)境學院 副教授 2018.07-2021.12 河南師范大學 環(huán)境學院 講師 2015.09-2018.07 南開大學 環(huán)境科學與工程學院 博士 2012.09-2015.07 南開大學 環(huán)境科學與工程學院 碩士 2008.09-2012.07 武漢理工大學 資源與環(huán)境工程學院 學士 | ||
研究領域 | ||
研究領域:環(huán)境地球化學,;生態(tài)毒理學與人體健康效應 研究興趣: (1)污染物的環(huán)境界面化學行為與遷移轉(zhuǎn)化機制,; (2)微/納米顆粒及其復合污染的水生態(tài)毒理學; (3)新污染物暴露的人體健康效應。 | ||
主要學術(shù)及社會兼職 | ||
(1)《生態(tài)學雜志》和《農(nóng)業(yè)環(huán)境科學學報》青年編委,; (2)Environ. Sci. Technol.,、Water Res.、J. Hazard. Mater.,、Sci. Total Environ.和Crit. Rev. Environ. Sci. Technol.等期刊審稿人 | ||
科研項目情況 | ||
[1] 國家自然科學基金面上項目:納米二硫化鉬在氯化消毒過程中的轉(zhuǎn)化及對其藻類毒性演變的影響研究(31770550),,2024.01–2027.12,主持,; [2] 國家自然科學基金青年基金:水體中胞外聚合物作用下單層二硫化鉬的化學轉(zhuǎn)化機制及生物效應研究(21906043),,2020.01–2022.12,主持,; [3] 中原千人計劃-青年拔尖人才項目(ZYQR201912188),,2020.01–2022.12,主持,; [4] 河南省優(yōu)秀青年基金項目:微塑料的腸-肝軸干擾效應及其分子機制(232300421102),,2023.01–2025.12,主持,; [5] 中國生態(tài)學學會青年人才托舉工程(2021–2023)項目(STQT2021C08),,污染生態(tài)學,2021.01–2023.12,,主持,; [6] 中國博士后科學基金面上項目:生物介質(zhì)調(diào)控二硫化鉬環(huán)境轉(zhuǎn)化及生態(tài)風險的機制研究(2018M642757),2018.12–2020.12,,主持,; [7] 河南師范大學青年基金項目:水體中天然納米膠體對磺胺ARGs水平轉(zhuǎn)移的影響及分子機理,2019.01–2021.12,,主持,; [8] 國家自然科學基金面上項目:石墨烯在沉積物-水界面遷移釋放及其誘發(fā)底棲生物響應的機制研究(31770550),2018.01–2021.12,,參與,; [9] 國家自然科學基金面上項目:底泥石油污染生物電化學原位生態(tài)修復及機理(31570504),2016.01–2019.12,,參與,。 | ||
代表性論文 | ||
近年來以第一/通訊作者身份共計發(fā)表論文26篇,其中SCI論文23篇(中科院一區(qū)論文19篇),,包括環(huán)境科學與生態(tài)學領域權(quán)威期刊Environ. Sci. Technol.論文5篇(2篇入選封面論文),、Water Res.論文1篇,Environ. Int.論文1篇,,J. Hazard. Mater.論文9篇,,總被引900余次,,單篇被引>50次論文8篇。 [1]Zou W.*, et al. Mitigation effects and associated mechanisms of environmentally relevant thiols on the phytotoxicity of molybdenum disulfide nanosheets. Environmental Science & Technology2022, 56(13), 9556-9568.(ES&T副封面) [2]Zou W., et al. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis. Environmental Science & Technology2020, 54 (21): 13888-13898. [3]Zou W., et al. Influence of size and phase on the biodegradation, excretion, and phytotoxicity persistence of single-layer molybdenum disulfide. Environmental Science & Technology2020, 54(19): 12295-12306. [4]Zou W., et al. Dissolved oxygen and visible light irradiation drive the structural alterations and phytotoxicity mitigation of single-layer molybdenum disulfide. Environmental Science & Technology 2019, 53(13), 7759?7769.(ES&T副封面) [5]Zou W., et al. Environmental transformations and phytotoxicity of single layer molybdenum disulfide regulated by human acid. Environmental Science & Technology 2018, 52, 2638?2648. [6] Zou W.*, et al. Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. Water Research 2021, 205, 117708. [7] Zhang X., Xia M., Zhao J., Cao Z., Zou W.*, Zhou Q. Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish. Environment International2022, 158, 106922. [8] Zhang X., Shi J., Wang R., Ma J., Li, X., Cai W., Li T., Zou W.* Acute exposure to tris(2,4-di-tert-butylphenyl)phosphate elicits cardiotoxicity in zebrafish (Danio rerio) larvae via inducing ferroptosis. Journal of Hazardous Materials 2024, 471, 134389. [9] Zou W.*, et al. Toxicity of hexagonal boron nitride nanosheets to freshwater algae: Phospholipid membrane damage and carbon assimilation inhibition. Journal of Hazardous Materials 2024, 465, 133204. [10] Zhang X., Shi J., Yuan P., Li T., Cao Z., Zou W.* Differential developmental and proinflammatory responses of zebrafish embryo to repetitive exposure of biodigested polyamide and polystyrene microplastics. Journal of Hazardous Materials 2023, 460, 132472. [11]Zou W.*, et al. Componential and molecular-weight-dependent effects of natural organic matter on the colloidal behavior, transformation, and toxicity of MoS2 nanoflakes. Journal of Hazardous Materials 2023, 459, 132186. [12] Zhang X., Zhao J., Gan T., Jin C., Li X., Cao Z., Jiang K., Zou W.* Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to zebrafish offspring. Journal of Hazardous Materials 2022, 437, 129409. [13] Zou W.*, et al. Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae. Journal of Hazardous Materials 2022, 435, 128953. [14] Zou W.*, et al. Photoinduced transformation of silver ion by molybdenum disulfide nanoflakes at environmentally relevant concentrations attenuates its toxicity to freshwater algae. Journal of Hazardous Materials 2021, 416, 126043. [15] Zou W.*, et al. Sulfur vacancies affect the environmental fate, corona formation, and microalgae toxicity of molybdenum disulfide nanoflakes. Journal of Hazardous Materials 2021, 419, 126499. [16] Zhang X., Xia M., Su X., Yuan P., Li X., Zhou C., Wan Z., Zou W.*, Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. Journal of Hazardous Materials 2021, 413, 125321. [17] Zou W.*, et al. Interactions of monolayer molybdenum disulfide sheets with metalloid antimony in aquatic environment: Adsorption, transformation, and joint toxicity. Science of the Total Environment2024, 926, 171937. [18]Zou W., et al. Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. Science of the Total Environment2020, 727, 138486. [19] Jin C., Cao J., Zhang K., Zhang X., Cao Z., Zou W.* Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. Ecotoxicology and Environmental Safety2023, 256, 114913. [20]Zou W., et al. Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. Ecotoxicology and Environmental Safety2018,159, 221–231. [21]Zou W., et al. Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology2017, 11, 781–793. [22]Zou W., et al. Graphene oxide inhibits antibiotic uptake and antibiotic resistance gene propagation.ACS Applied Materials& Interfaces 2016, 8, 33165-33174. [23] Zou W., et al. Systematic stress persistence and recovery patterns of rice (Oryza sativa L.) roots in response to molybdenum disulfide nanosheets. Chemosphere 2023, 321, 138166. [24]鄒威, 等. 華北地區(qū)不同規(guī)模畜禽養(yǎng)殖場糞便中抗生素抗性基因污染特征.農(nóng)業(yè)環(huán)境科學學報. 2020. [25]鄒威, 羅義, 周啟星*. 畜禽糞便中抗生素抗性基因污染問題及環(huán)境調(diào)控. 農(nóng)業(yè)環(huán)境科學學報. 2014, 33: 2281–2287 [26]張杏麗,,史菁,,趙靜宜,金彩霞,,張國慶,,鄒威*. 環(huán)境濃度微塑料增強TDCIPP肝臟毒性及其分子響應機制. 生態(tài)毒理學報2023, 18(04), 384–400. | ||
授權(quán)發(fā)明專利 | ||
榮譽與獎勵 | ||
[1] 中國生態(tài)學學會環(huán)境污染與生態(tài)保護優(yōu)秀青年學者(2024) [2] 河南省優(yōu)秀碩士學位論文指導教師(2023) [3] 河南省文明教師(2022) [4] 河南省高等學校優(yōu)秀共產(chǎn)黨員(2021) [5] 河南省大學生課外學術(shù)科技作品競賽優(yōu)秀指導教師(2023) [6] 河南師范大學“立德樹人”先進個人(2023) |